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ADDENDUM 

Addendum to ‘On the finite difference between divergent 
sum and integral’ 

G Barton 
University of Sussex, Brighton BN1 9QH, England 

Received 9 July 1981 

Abstract. For the differences D in the title, aprevious paper gave a general definition by the 
aid of cutoffs, but the methods given for evaluating D required fairly stringent conditions on 
summand and cutoff; it was thought that eventually these methods might become derivable 
as special cases from a more widely applicable argument operating with weaker restrictions. 
Here it is shown by a simple example that, contrary to such hopes, any plausible set of 
conditions that are significantly less restrictive than those used before fails to determine a 
unique value of D. Hence it seems unlikely that further worthwhile generalisations could be 
achieved. 

This addendum is strictly a sequel to the earlier paper with the same title (Barton 1981, 
to be referred to as I), whose motivation, listing of references, notation and arguments 
will be taken as read. Here we discuss the mathematical status of the conditions needed 
to validate the prescriptions given in I for actually evaluating the differences D of the 
title, as opposed to merely defining them in principle. It will be shown, contrary to the 
expectations entertained when I was written, that these conditions cannot be 
significantly relaxed if a unique value of D is to be guaranteed from the outset. In other 
words, in I we envisaged for the future, a deeper and more widely applicable theory, 
from which the explicit prescriptions presented there would follow as special cases; but 
now it appears that no such theory is possible, and that by and large the earlier results 
are the best that can be achieved. 

In I we presented three prescriptions; the two that remain in the running when 
partial sums and integrals are not given by familiar functions are the Abel-Plana (AP) 
and the Euler-Maclaurin (EM) prescriptions. The AP prescription requires fairly 
stringent analyticity and uniform-convergence conditions on the summand f ( n )  and on 
the cutoff function g(n1A); the EM prescription replaces the analyticity by differen- 
tiability conditions. With f given and a suitable class of cutoffs to be discovered, one can 
run into three different kinds of problem, which we shall list in order of difficulty. 
Problems of the first and second kinds were met already in I, but are mentioned here in 
order to put the third kind into perspective. The purpose of this addendum is to show 
that in order to insure from the outset against the third kind of problem, namely against 
non-uniqueness, one needs conditions that cannot be significantly less restrictive than 
those needed for the AP or EM prescriptions. 

We start from the fact that any successful prescription must produce an explicit 
functional 9 with the property 

0305-4700/82/010323 + 04$02.OO @ 1982 The Institute of Physics 323 



324 G Barton 

where it is essential not only that the functional 9{f(n)} make sense, but also that the 
first limit in (1) should exist, be unique, and be equal to the second limit, for all g in the 
class of admissible cutoffs. 

A snag of the first kind occurs if, armed with a given prescription for the functional 
9{f}, one encounters a summand f for which 9{f) diverges. For example, all versions 
of the AP prescription fail for the summand f(n) = exp(an) if IIm a /  > 2 ~ .  This can 
frustrate but not mislead one: the attempt fails to give any answer for D at all, and one 
must simply look for another prescription; in this example, our third method, namely 
the &-averaging method, turns out to work. 

A difficulty of the second kind occurs if the second limit in (1) exists (i.e. 9{f} makes 
sense), but is not equal to the first limit because the first limit does not exist. For 
example, with the cutoff g ( n / A )  = A2/[(n  -A)’+ r2] which is forbidden by both the AP 
and the EM prescriptions, and with the trivial summand f(n) = 1, 9 : ( f ( n ) g ( n / A ) }  
continues to oscillate indefinitely as A increases, even though . 9 { f (n ) }  = 0 is well 
defined, and even though the cutoff obeys the basic permanence condition 
limA,,g(n IA)  = 1. Here, the mathematical method, so far from failing, in fact alerts one 
that with cutoffs like this the difference D is a physically ill defined quantity, for which 
no cutoff -independent value should have been sought in the first place. 

The third kind of difficulty, and the only kind that might confuse even a careful 
calculation, arises if the first limit in (1) does exist, but depends on which cutoff one has 
chosen from a class of cutoffs all of which are prima facie reasonable. In other words the 
calculated value of D may fail to be unique without automatically signalling the fact. 
The AP and EM methods insure against just this possibility by restricting the admissible 
g(n lA)  as explained earlier, and as explained in detail in I. At first sight one might 
suspect, as the present writer did, that these apparently rather narrow restrictions are 
dictated by the technical needs of the proofs rather than by the nature of the problem 
itself. In particular, at this stage one might still entertain the hope that if 
limA..,,9{f(n)g(nlA)} exists at all, then the value it yields for D is unique subject only to 
the following physically plausible but mathematically much weaker conditions: (i) g is 
continuous and infinitely differentiable as a function of n ; (ii) it obeys the permanence 
condition limA+,g(nlA) = 1; (iii) for fixed n, g(n lA)  increases towards 1 monotonically 
with increasing A ;  (iv) for fixed A, g(n(A) is non-increasing with increasing ~t. For 
instance, condition (iii) would rule out the pathological cutoff quoted above. 

The point is that, disregarding subtleties, there appears to be no readily identifiable 
and plausible class of candidates for cutoff functions narrower than the class just 
specified yet significantly wider than those admitted by the AP or EM prescriptions. If 
this qualitative assessment is accepted, and if the class specified merely by the above 
conditions (i)-(iv) can be ruled out as too wide to guarantee uniqueness, then the AP- or 
EM-admissible cutoffs emerge as the natural choice, rather than as choices artificially 
restricted merely for convenience in establishing some explicit prescription. 

An explicit example shows that the conditions (i)-(iv) are indeed too wide; the 
example is admittedly somewhat artificial, but the point is that it is perfectly admissible 
under the conditions. The only summand we consider is the trivial one f(n) = 1, for 
which sensible prescriptions give D = 0. The cutoffs will be constructed by modifying a 
discontinuous piecewise-constant descending-staircase function until it conforms to the 
conditions. We shall need an auxiliary function E(x) ,  monotonically decreasing, 
continuous and infinitely differentiable for all real x ,  with the following properties: 

x s - a / 2 :  

x 3 a / 2 :  

E ( x )  = 1, 

E(X) = 0, 
( O < a < l ) .  
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Until further notice a is a fixed parameter. For example, we could adopt 

Next we chose a positive sequence {gN(A)},  N = 0 , 1 , 2 ,  . . . , such that 

) 3 g3O ) > go@ ) = 1 2 
m 

lim gN(A)=O,  1 g&) converges, 
N-tm N =O 

(4) 

lim gN(A)  = 1 .  
A-m 

For example we could chose gN(A) to be ( 1  +N/A)-’, or [ 1 +  (N/A)’]-’, with p > 1 .  For 
each choice of {gN} we construct a cutoff function g ( n ) A )  sketched in figure 1 and 
defined as follows: 

O C n  s ( 1 - 4 2 ) :  g ( n l A ) = g & ) = L  ( 5 a )  

( N + a / 2 )  s n ( N +  1 - 4 2 ) :  g (n  = g N  (A 1, ( 5 6 )  

( 5 c )  
( N  - 4 2 )  c n c (N + a/2): g(nlA) = {gnr-i(A)E(n - N )  gN(A)[ l  - E ( n  -N)1}. 

I 

5 f /  

0 

Figure 1. Sketch of a cutoff function defined by equations (3)-(5): not to scale. A typical 
element is shown on the right, as an aid in identifying the integrand in equation (8). The 
width of every curved portion is the same, namely a ;  but the height of the steps, namely 
(gN-l(A) -&,(A)), varies. Similar curves result from other choices of E ( x ) ;  notice that the 
curved portions can be highly asymmetric. 

For integer values n = N, equations ( 5 )  imply 

= 1, g(NlA)  = {ghr(A) + [ g ~ - i ( A )  - ~ N ( A  )1E(O)} ( N  2 1) .  (6) 

We can now write down the sum S(A), the integral I (A) ,  and their difference D. 
From (6) one finds immediately 

CO 00 

S(A)=$+E(O)+ 1 gN(A). (7) 
N = 1  

S(A)=$g(OlA)+ 1 g ( N h ) ,  
N = l  
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,- 4 2  m 

Equations (7) and (9) combine to give the end result 
n / 2  

S ( A ) - I ( A )  = D  = (-1/2+u/Z+E(O)-J -a /2  dxE(x)). (10) 

(Since S(A) - I (A)  does not actually depend on A, the final limit A -+ a3 becomes 
redundant.) 

It is evident from (10) that, given the function E(x) ,  the same value of D results from 
any cutoff constructed from a set { g N ( A ) }  in accordance with (4) and ( 5 ) .  But the crucial 
point is that different functions E yield different values of D, even though each such 
value is common to a wide class of cutoffs, as we have just seen. For example, even 
without changing the functional form of E, our point is made very simply by retaining 
the specification (3) and changing just the numerical value of U .  The consequent change 
in D confirms that the conditions (i)-(iv) fail to determine D uniquely; our argument is 
then complete. 
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